Sequential unfolding of individual helices of bacterioopsin observed in molecular dynamics simulations of extraction from the purple membrane.
نویسندگان
چکیده
Multiple molecular dynamics simulations of bacterioopsin pulling from its C-terminus show that its alpha-helices unfold individually. In the first metastable state observed in the simulations, helix G is unfolded at its C-terminal segment while the rest of helix G (residues 200-216) is folded and opposes resistance because of a salt-bridge network consisting of Asp-212 and Lys-216 on helix G and Arg-82 and Asp-85 on helix C. Helix G unfolds inside the bundle because the external force is applied to its C-terminal end in a direction perpendicular to the surface of the membrane. Inversely, helix F has to flip by 180 degrees to exit from the membrane because the applied force and the helical N-C axis point in opposite directions. At the highest peak of the force, which cannot be interpreted in single-molecule force spectroscopy experiments, helix F has a pronounced kink at Pro-186. Mutation of Pro-186 and/or the charged side chains mentioned above, which are involved in very favorable electrostatic interactions in the low-dielectric region of the membrane, are expected to reduce the highest peak of the force. Helices E and D unfold in a similar way to helices G and F, respectively. Hence, the force-distance profile and sequence of events during forced unfolding of bacterioopsin are influenced by the up-and-down topology of the seven-helix bundle. The sequential extraction of individual helices from the membrane suggests that the spontaneous (un)folding of bacterioopsin proceeds through metastable bundles of fewer than seven helices. The metastable states observed in the simulations provide atomic level evidence that corroborates the interpretation of very recent force spectroscopy experiments of bacteriorhodopsin refolding.
منابع مشابه
Unfolding pathways of individual bacteriorhodopsins.
Atomic force microscopy and single-molecule force spectroscopy were combined to image and manipulate purple membrane patches from Halobacterium salinarum. Individual bacteriorhodopsin molecules were first localized and then extracted from the membrane; the remaining vacancies were imaged again. Anchoring forces between 100 and 200 piconewtons for the different helices were found. Upon extractio...
متن کاملVelocity-dependent mechanical unfolding of bacteriorhodopsin is governed by a dynamic interaction network.
Bacteriorhodopsin is a model system for membrane proteins. This seven transmembrane helical protein is embedded within a membrane structure called purple membrane. Its structural stability against mechanical stress was recently investigated by atomic force microscopy experiments, in which single proteins were extracted from the purple membrane. Here, we study this process by all-atom molecular ...
متن کاملDissertation Christian Kappel
Bacteriorhodopsin is a model system for membrane proteins. This seven transmembrane helical protein isembedded within a membrane structure called purple membrane. Its structural stability against mechanical stress was recentlyinvestigated by atomic force microscopy experiments, in which single proteins were extracted from the purple membrane. Here,we study this process by all-atom m...
متن کاملProbing the energy landscape of the membrane protein bacteriorhodopsin.
The folding and stability of transmembrane proteins is a fundamental and unsolved biological problem. Here, single bacteriorhodopsin molecules were mechanically unfolded from native purple membranes using atomic force microscopy and force spectroscopy. The energy landscape of individual transmembrane alpha helices and polypeptide loops was mapped by monitoring the pulling speed dependence of th...
متن کاملEnergy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations
Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 91 9 شماره
صفحات -
تاریخ انتشار 2006